Mean Shift Segmentation - Evaluation of Optimization Techniques
نویسندگان
چکیده
The mean shift algorithm is a powerful clustering technique, which is based on an iterative scheme to detect modes in a probability density function. It has been utilized for image segmentation by seeking the modes in a feature space composed of spatial and color information. Although the modes of the feature space can be efficiently calculated in that scheme, different optimization techniques have been investigated to further improve the calculation speed. Besides those techniques that improve the efficiency using specialized data structures, there are other ones, which take advantage of some heuristics, and therefore affect the accuracy of the algorithm output. In this paper we discuss and evaluate different optimization strategies for mean shift based image segmentation. These optimization techniques are quantitatively evaluated based on different real world images. We compare segmentation results of heuristic-based, performance-optimized implementations with the segmentation result of the original mean shift algorithm as a gold standard. Towards this end, we utilize different partition distance measures, by identifying corresponding regions and analyzing the thus revealed differences.
منابع مشابه
Clustering techniques in colour image segmentation
In this paper, five clustering techniques (k-means, ISODATA, merging, splitting and mean shift techniques) used for colour image segmentation are presented. Two heuristic evaluation methods (cluster validity measure VM and quality function Q) are applied. We show that evaluation functions VM and Q can be very helpful in search of best segmentation results. The best results came from k-means, me...
متن کاملA Study On Image Segmentation Techniques
Abstract—Image segmentation is very important step of image analysis which is used to partitioned image into several homogenous regions by classifying pixels of whole image into different regions that exhibit similar characters. The result of image segmentation is a set of sections that together cover the whole image. This paper has presented a review on various image segmentations techniques l...
متن کاملEvaluation of Performance of Fuzzy C Means and Mean Shift based Segmentation for Multi-Spectral Images
Image Segmentation has become very useful vision application because it can be used in many image processing applications. An image segmentation results in an images where each object is differentiated from other one. Many segmentation techniques have been proposed so far to get accurate segmentation results. This paper has focused on Mean Shift and Fuzzy C means clustering algorithm to segment...
متن کاملIterated Graph Cuts for Image Segmentation
Graph cuts based interactive segmentation has become very popular over the last decade. In standard graph cuts, the extraction of foreground object in a complex background often leads to many segmentation errors and the parameter λ in the energy function is hard to select. In this paper, we propose an iterated graph cuts algorithm, which starts from the sub-graph that comprises the user labeled...
متن کاملImproved mean shift segmentation approach for natural images
This paper proposes an improved natural image segmentation approach that is more effective, more controllable and more stable under various backgrounds than the traditional mean shift segmentation. The proposed approach employs following four new aspects: the changeable color bandwidth, the direct density searching, the global optimization for mode merging, and the elimination of texture patche...
متن کامل